Soft learning vector quantization and clustering algorithms based on non-Euclidean norms: multinorm algorithms
نویسندگان
چکیده
This paper presents the development of soft clustering and learning vector quantization (LVQ) algorithms that rely on multiple weighted norms to measure the distance between the feature vectors and their prototypes. Clustering and LVQ are formulated in this paper as the minimization of a reformulation function that employs distinct weighted norms to measure the distance between each of the prototypes and the feature vectors under a set of equality constraints imposed on the weight matrices. Fuzzy LVQ and clustering algorithms are obtained as special cases of the proposed formulation. The resulting clustering algorithm is evaluated and benchmarked on three data sets that differ in terms of the data structure and the dimensionality of the feature vectors. This experimental evaluation indicates that the proposed multinorm algorithm outperforms algorithms employing the Euclidean norm as well as existing clustering algorithms employing weighted norms.
منابع مشابه
An axiomatic approach to soft learning vector quantization and clustering
This paper presents an axiomatic approach to soft learning vector quantization (LVQ) and clustering based on reformulation. The reformulation of the fuzzy c-means (FCM) algorithm provides the basis for reformulating entropy-constrained fuzzy clustering (ECFC) algorithms. This analysis indicates that minimization of admissible reformulation functions using gradient descent leads to a broad varie...
متن کاملSoft learning vector quantization and clustering algorithms based on ordered weighted aggregation operators
This paper presents the development and investigates the properties of ordered weighted learning vector quantization (LVQ) and clustering algorithms. These algorithms are developed by using gradient descent to minimize reformulation functions based on aggregation operators. An axiomatic approach provides conditions for selecting aggregation operators that lead to admissible reformulation functi...
متن کاملClustering: A neural network approach
Clustering is a fundamental data analysis method. It is widely used for pattern recognition, feature extraction, vector quantization (VQ), image segmentation, function approximation, and data mining. As an unsupervised classification technique, clustering identifies some inherent structures present in a set of objects based on a similarity measure. Clustering methods can be based on statistical...
متن کاملApplications of lp-Norms and their Smooth Approximations for Gradient Based Learning Vector Quantization
Learning vector quantization applying non-standard metrics became quite popular for classification performance improvement compared to standard approaches using the Euclidean distance. Kernel metrics and quadratic forms belong to the most promising approaches. In this paper we consider Minkowski distances (lp-norms). In particular, l1-norms are known to be robust against noise in data, such tha...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 14 1 شماره
صفحات -
تاریخ انتشار 2003